Sure shots Maths Solutions (Most Probable) 10th session 2024-25

7

1. Real Number

1. (<i>d</i>)	Given $p = 18a^2b^4$		
	$= 2 \times 3 \times 3 \times a \times a \times b >$	$ b \times b \times b = $	$2 \times 3^2 \times a^2 \times b^4$
	and $q = 20 a^3 b^2 = 2 \times 2 \times 2$	$5 \times a \times a \times a$	$\times b \times b$
	$= 2^2 \times 5 \times a^3 \times b^2$		
	\therefore LCM $(p, q) = 2 \times 2 \times 3 \times$	$3 \times 5 \times a \times a \times$	$a \times b \times b \times b \times b$
	$= 2^2 \times 3^2 \times 5 \times a^3 \times b^4 = 1$	$80a^{3}b^{4}$	(1 M)
2. (<i>a</i>)	We know that		
	$LCM \times HCF = product of the second s$	f the given nu	mbers
	$\rightarrow 10 \times 252 \times k = 2520$	× 6600	

$$\Rightarrow k = \frac{2520 \times 6600}{252 \times 40} = \frac{10 \times 660}{4}$$
$$\Rightarrow k = 10 \times 165 = 1650$$
(1 M)

3. (*b*) The prime factorisation of 3750 is;

$$3750 = 5^4 \times 2 \times 3 \tag{1/2 M}$$

 \therefore The exponent of 5 in the prime factorisation of 3750 is 4. $(\frac{1}{2}M)$

- **4.** (c) The time after which they again ring together = LCM of 20, 25, 30
 - 20, 25, 30 5 2 4, 5, 6 2, 5, 3

:. LCM (20, 25, 30) = $5^2 \times 2^2 \times 3 = 300$

 \therefore They ring again together after = 300 minutes

 $=\frac{300}{60}$ hr = 5hr

If they first ring together at 12 noon, they again ring together after 5hrs at 5:00 pm. (1 M)

5. Let $5 - 2\sqrt{3}$ is a rational number

$$\therefore 5 - 2\sqrt{3} = \frac{a}{b}$$
, [where a and b are integers, $b \neq 0$] (½ M)

$$2\sqrt{3} = 5 - \frac{a}{b} \Rightarrow \sqrt{3} = \frac{5}{2} - \frac{a}{2b} \Rightarrow \sqrt{3} = \frac{5b - a}{2b} \qquad (\frac{1}{2}M)$$

Since, <i>a</i> and <i>b</i> are integers. Therefore $\frac{-2i}{2i}$	$\frac{-a}{b}$ is a
rational number and so, $\sqrt{3}$ is also a rational num	nber. But
this contradicts the fact that $\sqrt{3}$ is an irrational So, our assumption is not true.	l number (½ M)
Hence, $5 - 2\sqrt{3}$ is an irrational number.	(½ M)
The prime factorisation of 72 and 120 is g $72 = 2 \times 2 \times 2 \times 3 \times 3$ and $120 = 2 \times 2 \times 2 \times 3 \times 5$	given by (½ M)
H.C.F (72, 120) = Product of common factors with power = $2 \times 2 \times 2 \times 3 = 24$	th lowest (½ M)
L.C.M (72, 120) = Product of prime factors with power = $2 \times 2 \times 2 \times 3 \times 3 \times 5 = 360$	h highest (½ M)
Hence, the H.C.F and L.C.M of 72 and 120 are 24 respectively.	4 and 360 (½ M)
. Let $\sqrt{5}$ be a rational number then it must be in the	e form of
p 1 p (z) 1 z (z)	
$rac{1}{q}$ where $q \neq 0$ (p and q are co-prime) q	(½ M)
where $q \neq 0$ (p and q are co-prime) $\sqrt{5} = \frac{p}{q} \Rightarrow \sqrt{5} \times q = p$ Squaring on both sides,	(½ M) (½ M)
$\frac{1}{q} \text{ where } q \neq 0 \text{ (}p \text{ and } q \text{ are co-prime)}$ $\sqrt{5} = \frac{p}{q} \Rightarrow \sqrt{5} \times q = p$ Squaring on both sides, $5q^2 = p^2 \qquad \dots(i)$ $p^2 \text{ is divisible by 5}$	(½ M) (½ M) (½ M)
$\frac{1}{q} \text{ where } q \neq 0 \text{ (}p \text{ and } q \text{ are co-prime)}$ $\sqrt{5} = \frac{p}{q} \Rightarrow \sqrt{5} \times q = p$ Squaring on both sides, $5q^2 = p^2 \qquad \dots(i)$ $p^2 \text{ is divisible by 5}$ $p = 5c$ Squaring on both sides	(½ M) (½ M) (½ M)
$\frac{1}{q} \text{ where } q \neq 0 \text{ (}p \text{ and } q \text{ are co-prime)}$ $\sqrt{5} = \frac{p}{q} \Rightarrow \sqrt{5} \times q = p$ Squaring on both sides, $5q^2 = p^2 \qquad \dots(i)$ $p^2 \text{ is divisible by 5}$ $p = 5c$ Squaring on both sides $p^2 = 25c^2 \qquad \dots(ii)$	(½ M) (½ M) (½ M)
$\frac{1}{q} \text{ where } q \neq 0 \text{ (}p \text{ and } q \text{ are co-prime)}$ $\sqrt{5} = \frac{p}{q} \Rightarrow \sqrt{5} \times q = p$ Squaring on both sides, $5q^2 = p^2 \qquad \dots(i)$ $p^2 \text{ is divisible by 5}$ $p = 5c$ Squaring on both sides $p^2 = 25c^2 \qquad \dots(ii)$ putting p^2 in eq (i)	(½ M) (½ M) (½ M)

So, q is divisible by 5. Thus p and q have a common factor of 5. $(\frac{1}{2}M)$ we have contradicted our assumption wrong. Therefore $\sqrt{5}$ is an irrational number.

14.

(1 M)

2. Polynomials

8. (b)
$$\alpha + \beta = \frac{-b}{a} = \frac{+9}{2} \Rightarrow \alpha\beta = \frac{c}{a} = \frac{5}{2}$$

 $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2 \Rightarrow \frac{81}{4} - \frac{10}{2} = \alpha^2 + \beta^2$
 $\Rightarrow \alpha^2 + \beta^2 = \frac{81 - 20}{4} = \frac{61}{4}$ (1 M)
9. (d) $p(x) = 4x^2 - 3x - 7$
Here, $\alpha + \beta = \frac{-b}{a} \Rightarrow \alpha + \beta = \frac{3}{4}$...(i)
Also, $\alpha\beta = \frac{c}{a} \Rightarrow \alpha\beta = \frac{-7}{4}$...(ii)
Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{\frac{3}{4}}{\frac{-7}{4}}$ [From (i) and (ii)]
 $\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} = \frac{-3}{7}$ (1 M)
10. (a) Given, polynomial $f(x) = x^2 + 3x + k$
It is also given that 2 is one of its zeroes.
 $\therefore f(2) = 0 \Rightarrow (2)^2 + 3(2) + k = 0$
 $\Rightarrow 4 + 6 + k = 0 \Rightarrow k = -10$

Hence, the value of
$$k$$
 is -10 . (1 M)

11. (d) Let α and β are the zeroes of the polynomial $x^2 + (a+1)x + b$ Here, $\alpha = 2$ and $\beta = -3$

Sum of zeroes,
$$\alpha + \beta = \frac{1}{1}$$

 $\Rightarrow 2 + (3) = -\alpha + 1 \Rightarrow \alpha = 0$

Product of zeroes,
$$\alpha\beta = \frac{b}{1} \Rightarrow 2(-3) = b \Rightarrow b = -6$$

y

12. (*c*)

$$x' \leftarrow A$$
 B $C \leftarrow x$ $C \leftarrow x$

Number of zeroes of a polynomial = Number of times intersects the graph the *x*-axis.

 \therefore The no. of zeroes of the given polynomial = 3 (1 M)

 $p(x) = x^2 - (\text{sum of zeroes}) x + (\text{product of zeroes})$

Given, sum of zeroes = 0
and Product of zeroes =
$$\frac{-3}{5}$$
 (1 M)
 \therefore The quadratic polynomial is;
 $x^2 - (0)x + \left(\frac{-3}{5}\right) = x^2 - \frac{3}{5}$
Now, to find the zeroes of the polynomial;
 $x^2 - \frac{3}{5} = 0 \Rightarrow x^2 = \frac{3}{5} \Rightarrow x^2 = \left(\sqrt{\frac{3}{5}}\right)^2$ (1 M)
 $\Rightarrow x = \pm \sqrt{\frac{3}{5}} \Rightarrow x = \sqrt{\frac{3}{5}} \text{ or } x = -\sqrt{\frac{3}{5}}$
 $\Rightarrow x = \sqrt{\frac{3}{5}} \Rightarrow \sqrt{\frac{5}{5}} \text{ or } x = -\sqrt{\frac{3}{5}} \sqrt{\frac{5}{5}}$
 $\Rightarrow x = \sqrt{\frac{3}{5}} \sqrt{\frac{5}{5}} \text{ or } x = -\sqrt{\frac{3}{5}} \sqrt{\frac{5}{5}}$ (1 M)
 \therefore The zeroes of the polynomial are $\frac{\sqrt{15}}{5}$ or $\frac{-\sqrt{15}}{5}$
(i) Given, equation $h = 25t - 5t^2$
Putting $h = 0$, we get
 $25t - 5t^2 = 0 \Rightarrow 5t (5 - t) = 0 \Rightarrow t = 5 \text{ or } t = 0$
Hence, zeroes are $5 \& 0$. (1 M)
(ii) Maximum height is achieved at the vertex of the this
given parabola having $t = \frac{5}{2}$
 \therefore Putting $t = \frac{5}{2}$ in equation $h = 25t - 5t^2$ we get
 $\therefore h = \frac{25 \times 5}{2} - \frac{5 \times 25}{4} = \frac{250 - 125}{4} = \frac{125}{4} \text{ m}$ (1 M)
(iii) (a) To reach 30m, $h = 30m$
 $30 = 25t - 5t^2 \Rightarrow 5t^2 - 25t + 30 = 0$
 $\Rightarrow t^2 - 5t + 6 = 0 \Rightarrow t^2 - 3t - 2t + 6 = 0$ (1 M)
 $\Rightarrow t (t - 3) - 2 (t - 3) = 0 \Rightarrow (t - 3) (t - 2) = 0$
 $\Rightarrow t = 3, \text{ or } t = 2$
Hence ball took 2 seconds (1 M)
 $\Rightarrow t (t - 4) - 1 (t - 4) = 0 \Rightarrow (t - 4)(t - 1) = 0$
 $\Rightarrow t = 4 \text{ or } t = 1$ (1 M)

3. Pair of Linear Equation in Two Variables

15. (*b*) For the pair of linear equations to be dependent and consistent, we have.

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{3}{6} = \frac{-1}{-k} = \frac{8}{16} \implies \frac{1}{2} = \frac{1}{k} = \frac{1}{2}$ Hence for k = 2 equations have infinitely many solution (1 M)16. (d) A pair of linear equation is inconsistent if, for two linear equation. $a_1x + b_1y + c_1 = 0 \& a_2x + b_2y + c_2 = 0$, we have $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ given, two linear equation are; x + 2y = 3 & 5x + ky + 7 = 0 $(\frac{1}{2}M)$ Here, $a_1 = 1$; $b_1 = 2$; $c_1 = -3$ $a_2 = 5$; $b_2 = k$; $c_2 = 7$ Now, for inconsistency, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \Rightarrow \frac{1}{5} = \frac{2}{k} \Rightarrow k = 10$ And, $\frac{a_1}{a_2} \neq \frac{c_2}{c_2} \Rightarrow \frac{1}{5} \neq \frac{-3}{7}$ [satisfied] $\therefore k = 10$ $(\frac{1}{2}M)$ 17. Given, system of linear equations are 2x + 3y = 7(k+1)x + (2k-1)y = 4k+1Since, the given system of equation is of the form $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ Where, $a_1 = 2, b_1 = 3, c_1 = -7$ $a_2 = k + 1, b_2 = 2k - 1, c_2 = -(4k + 1)$ (¹/₂ Mark) for infinitely many solutions $\underline{a_1} = \underline{b_1} = \underline{c_1}$ $a_2 \ b_2 \ c_2$ $\therefore \frac{2}{k+1} = \frac{3}{2k-1} = \frac{-7}{-(4k+1)}$ (1/2 Mark) $\Rightarrow 2(2k-1) = 3(k+1) \text{ or } 3(4k+1) = 7(2k-1)$ $\Rightarrow 4k - 2 = 3k + 3$ or 12k + 3 = 14k - 7 $\Rightarrow k = 5 \text{ or } k = 5$ Hence, value of k is 5. (1 Mark) 18. Consider, the fraction be -(¹/₂ Mark) Given, fraction becomes $\frac{1}{3}$ when 2 is subtracted from numerator. $\frac{x-2}{y} = \frac{1}{3}$ (1/2 Mark) $\Rightarrow 3x - 6 = y \Rightarrow 3x - y - 6 = 0$...(*i*) Given, also fraction becomes $\frac{1}{2}$ when 1 is subtracted from denominator. $\frac{x}{y-1} = \frac{1}{2}$ (¹/₂ Mark)

 $\Rightarrow 2x = y - 1 \Rightarrow 2x - y + 1 = 0$...(*ii*) From equation (i) and (ii) 3x - y - 6 = 02x - y + 1 = 0x - 7 = 0 $\Rightarrow x = 7$ (1/2 Mark) From equation (i) $3 \times 7 - y - 6 = 0$ $\Rightarrow 21 - y - 6 = 0 \Rightarrow y = 15$ (1/2 Mark) Hence, fraction is $\frac{7}{15}$. (1/2 Mark) **19.** Let the unit digit be x & the tens digit be y $(\frac{1}{2}M)$ \therefore original number = 10v + xNow, according to question, sum of digits is 8. i.e., x + y = 8...(*i*) $(\frac{1}{2}M)$ And, also the differences between the number & that formed by reversing the digits is 18. If the digits are reversed, then, unit digit = y, tens digit = x \therefore The reversed number = 10x + y. $(\frac{1}{2}M)$ \therefore According to question (x + 10y) - (10x + y) = 18 $\Rightarrow x + 10y - 10x - y = 18 \Rightarrow -9x + 9y = 18$ $\Rightarrow 9(-x+y) = 18 \Rightarrow -x+y = 2$...(*ii*) $(\frac{1}{2}M)$ Adding equation (i) and (ii), we get $2v = 10 \Rightarrow v = 5$ Putting y = 5 in (*i*), we get, $x + 5 = 8 \Longrightarrow x = 8 - 5 = 3$ $(\frac{1}{2}M)$:. Original no. is: 10y + x = 10(5) + 3 = 50 + 3 = 53 ($\frac{1}{2}M$) **20.** (i) Given, Hockey $\not\in x$ per student and cricket $\not\in y$ per student. For school 'P', the total prize amount for hockey and cricket is ₹9500. The number of students awarded for hockey and cricket are 5 and 4 respectively. Hence, 5x + 4y = 9500 $...(i) (\frac{1}{2} M)$ For school 'Q', the total prize amount for hockey and cricket is ₹7370. The number of students awarded are 4 and 3 respectively. Hence, 4x + 3y = 7370...(*ii*) ($\frac{1}{2}M$) (*ii*) (*a*) Given equations are: $5x + 4y = 9500 \times 3$ $4x + 3y = 7370 \times 4$ 15x + 12y = 28500 $(\frac{1}{2}M)$ 16x + 12y = 29480 $(\frac{1}{2}M)$ = -980 $(\frac{1}{2}M)$ -x Hence, prize amount for hockey is ₹980 (½ M)

(1 M)

OR

(b) On substituting the value of x in (i), we get 5(980) + 4y = 9500 (4/2 M)

$$\Rightarrow y = \frac{9500 - 4900}{4} = \frac{4600}{4} = 1150 \qquad (\frac{1}{2} M)$$

Hence, prize amount of cricket is more by
$$1150 - 980 = ₹170$$
 (1 M)

(*iii*) If there are 2 students each from two games, then total prize money =
$$2x + 2y$$

= 2(980) + 2(1150) = ₹4260

4. Quadratic Equations

21. (*d*) Given, quadratic equation is $ax^2 + bx + c = 0$ Condition for real and equal roots is D = 0

$$\therefore b^2 - 4ac = 0 \qquad [\because D = b^2 - 4ac]$$

$$\Rightarrow b^2 = 4ac \Rightarrow c = \frac{b^2}{4a} \tag{1 M}$$

- 22. We have, $x^2 2ax + (a^2 b^2) = 0$ $\Rightarrow (x^2 - 2ax + a^2) - b^2 = 0$ (½ M) $\Rightarrow (x - a)^2 - b^2 = 0$ [$\because a^2 - 2ab + b^2 = (a - b)^2$] $\Rightarrow (x - a - b) (x - a + b) = 0$ (½ M) $[\because a^2 - b^2 = (a - b) (a + b)]$ $\Rightarrow x - a - b = 0 \text{ or } x - a + b = 0$ $\Rightarrow x = -(-a - b) \text{ or } x = -(-a + b)$ (½ M) $\Rightarrow x = a + b \text{ or } x = a - b$ (½ M)
- 23. $\sqrt{2x+9} + x = 13 \Rightarrow \sqrt{2x+9} = 13 x$ On squaring both sides, we get $(\sqrt{2x+9})^2 = (13-x)^2 \Rightarrow 2x+9 = 169 + x^2 - 26x$ (1 M) $\Rightarrow x^2 - 26x - 2x + 169 - 9 = 0 \Rightarrow x^2 - 28x + 160 = 0$

$$\Rightarrow x^2 - 20x - 8x + 160 = 0 \text{ [Middle term factorisation]}$$

$$\Rightarrow x(x - 20) - 8 (x - 20) = 0 \Rightarrow (x - 8) (x - 20) = 0$$

$$\therefore x = 8, 20 \qquad (1 M)$$

24. Given,

$$\Rightarrow p(x-4) (x-2) + (x-1)^2 = 0$$

$$\Rightarrow p(x^2 - 4x - 2x + 8) + (x^2 - 2x + 1) = 0$$

$$\Rightarrow (p+1)x^2 + (-6p - 2)x + 8p + 1 = 0$$
 (1 M)
Now, equation has real and equal roots

$$\therefore D = 0 \qquad [\because D = b^2 - 4ac]$$

$$\Rightarrow b^2 - 4ac = 0 \qquad (1 M)$$

$$\Rightarrow (-6p - 2)^2 - 4(p+1) (8p+1) = 0$$

$$\Rightarrow 36p^2 + 4 + 24p - 4(8p^2 + p + 8p + 1) = 0$$

$$\Rightarrow 36p^2 + 4 + 24p - 32p^2 - 36p - 4 = 0$$

$$\Rightarrow 4p^2 - 12p = 0 \Rightarrow p^2 - 3p = 0$$

$$\Rightarrow p(p-3) = 0 \Rightarrow p = 0 \text{ or } p = 3.$$

Hence, the values of p are 0 and 3 (1 M)

25. Let the uniform speed of the train be x km/h.

	Let the antional speed of the train of a magnetic	
	\therefore The time taken to cover the distance 480 km = $\frac{4}{2}$	$\frac{80}{h}h$
	Now the speed $(x - 8)$ km/h.	x (½ M)
	The time taken to cover the same distance $=\frac{480}{r-8}h$	e (½ M)
	According to question, $\frac{480}{x-8} = \frac{480}{x} + 3$	(½ M)
	$\Rightarrow \frac{480}{x-8} - \frac{480}{x} = 3 \Rightarrow 480 \left(\frac{x-x+8}{(x-8)x}\right) = 3$	(½ M)
	$\Rightarrow x^2 - 8x = 160 \times 8 \Rightarrow x^2 - 8x - 1280 = 0$	
	$\Rightarrow x^2 - 40x + 32x - 1280 = 0 \Rightarrow x(x - 40) + 32(x - 40) +$	40) = 0
	$\Rightarrow (x-40)(x+32) = 0 \Rightarrow x = 40, -32 \Rightarrow x = -32 \text{ not } p$	possible
	∴ The speed is 40 km/h.	(1 M)
26	I et the length of niece he r m then rate per metre =	_ 200
20.	New length = $(x + 5)$ m	x
	New rate per metre = $\frac{200}{200}$	(1 M)
	x+5 Now according to question	
	$200 \ 200 \ 200x + 1000 - 200x$	
	$\frac{200}{x} - \frac{200}{x+5} = 2 \implies \frac{200}{x(x+5)} = 2$	(1 M)
	$\Rightarrow 1000 = 2x(x+5) \Rightarrow 2x^2 + 10x - 1000 = 0$	
	$\Rightarrow x^{2} + 5x - 500 = 0 \Rightarrow x^{2} + 25x - 20x - 500 = 0$	
	$\Rightarrow x(x+25) - 20(x+25) = 0 \Rightarrow (x+25) (x-2)$	20) = 0
	$\Rightarrow x = -25 \text{ or } x = 20$	$(\frac{72}{4}M)$
	length cannot be negative	()
	So, $x = 20$ and rate per metre $= ₹ \frac{200}{20} = ₹ 10$	(1 M)
27.	Given, $\frac{1}{(2x-3)} + \frac{1}{(x-5)} = 1\frac{1}{9} \Rightarrow \frac{1}{(2x-3)} + \frac{1}{(x-5)}$ (x-5) + (2x-3) = 10 [T 1: 1 CM = 140]	$\frac{10}{9} = \frac{10}{9}$
	$\Rightarrow \frac{1}{(2x-3)(x-5)} = \frac{1}{9} [\text{Taking LCM on LHS}]$	(1 M)
	$\Rightarrow \frac{3x-8}{(2x-3)(x-5)} = \frac{10}{9} \Rightarrow 9(3x-8) = 10(2x-3) ($ [By using cross multiple] $\Rightarrow 27x - 72 = 10(2x^2 - 10x - 3x + 15)$	(x-5) [ication]
	$\Rightarrow 27x - 72 = 10(2x^2 - 13x + 15)$	
	$\Rightarrow 27x - 72 = 20x^2 - 130x + 150$	
	$\Rightarrow 20r^2 - 130r - 27r + 150 + 72 = 0 $ (2)	Marks)
	[Arranging the terms on or	ne side]
	$\Rightarrow 20x^2 - 157x + 222 = 0$	-
	$\Rightarrow 20x^2 - 37x - 120x + 222 = 0$ [Middle term factor	risation]
	$\Rightarrow x(20x - 37) - 6(20x - 37) = 0$	

$$\Rightarrow (x-6) (20x-37) = 0$$

$$\Rightarrow x-6 = 0 \text{ or } 20x-37 = 0 \Rightarrow x = 6 \text{ or } x = \frac{37}{20}$$

Hence, the values of x are 6 & $\frac{37}{20}$. (1 M)

5. Arithmetic Progression

28. (c) Given
$$a = 7$$
, $a_n = 84$ and $s_n = \frac{2093}{2}$
As we know, $s_n = \frac{n}{2} [a + a_n]$
 $\frac{2093}{2} = \frac{n}{2} [7 + 84] \Rightarrow 2093 = n[91]$
 $\Rightarrow n = \frac{2093}{91} = 23$ (1 M)

- **29.** (b) Given A.P., $-29, -26, -23, \dots, 61$ Here, a = -29, d = -26 - (-29) = 3 $\therefore a_n = a + (n - 1) d$ $\therefore 16 = -29 + (n - 1) 3 \Rightarrow 45 = 3n - 3 \Rightarrow n = 16$ Hence, 16^{th} term is 16. (1 M)
- **30.** Given A.P. is $\frac{-11}{2}$, -3, $\frac{-1}{2}$, ..., $\frac{49}{2}$ Here, $a = \frac{-11}{2}$ and $d = -3 + \frac{11}{2} = \frac{5}{2}$ (½ M) Given, $a_n = \frac{49}{2}$ (½ M)

$$\Rightarrow a + (n-1) d = a_n \Rightarrow \frac{-11}{2} + (n-1)\frac{5}{2} = \frac{49}{2}$$
$$\Rightarrow (n-1) = 12 \Rightarrow n = 13$$
(1 M)

- **31.** Given sum of first *m* terms is *n* & sum of first *n* terms is *m*. Let the first term of the AP be *a* & the common difference be *d*.
 - $\therefore \text{ According to question,}$ $\therefore S_m = n \Rightarrow \frac{m}{2} [2a + (m-1)d] = n \Rightarrow 2a + (m-1)d = \frac{2n}{m} \dots (i)$ and $S_n = m$ $\frac{n}{2} [2a + (n-1)d] = m$ $\Rightarrow 2a + (n-1)d = \frac{2m}{n} \dots (ii) \text{ (I M)}$ Now, equation (i) – equation (ii), we get $\Rightarrow (m-1)d - (n-1)d = \frac{2n}{m} - \frac{2m}{n}$ $\Rightarrow d[m-1-n+1] = \frac{2n^2 - 2m^2}{nm} \Rightarrow d(m-n) = \frac{2(n^2 - m^2)}{nm}$ $\Rightarrow d = \frac{2(n-m)(n+m)}{nm(m-n)} = \frac{-2(n+m)}{nm} \text{ (I M)}$

Putting,
$$d = \frac{-2(n+m)}{nm}$$
 in (*i*), we get
 $2a + (m-1)\frac{(-2)(n+m)}{nm} = \frac{2n}{m} \Rightarrow 2a = \frac{2n}{m} + \frac{2(m-1)(n+m)}{nm}$
 $\Rightarrow 2a = \frac{2n^2 + 2(mn + m^2 - n - m)}{nm}$
 $\Rightarrow 2a = 2\left[\frac{n^2 + mn + m^2 - n - m}{mn}\right]$
Now, sum of first $(m + n)$ terms is
 $S_{m+n} = \frac{(m+n)}{2}\left[2a + (m+n-1)d\right]$
 $= \frac{(m+n)}{2}\left[2\left(\frac{n^2 + mn + m^2 - n - m}{mn}\right) + (m+n-1)\left(\frac{-2(m+n)}{nm}\right)\right]$
 $= \frac{(m+n)}{2}\left[\frac{2(n^2 + mn + m^2 - n - m) - 2(m+n-1)(m+n)}{mn}\right]$
 $= \frac{(m+n)}{2}\left[\frac{2n^2 + 2mn + 2m^2 - 2n - 2m - 2(m^2 + mn - m + m + n^2 - n)}{nm}\right]$
 $= \frac{(m+n)}{2}\left[\frac{2n^2 + 2mn + 2m^2 - 2n - 2m - 2(m^2 + mn - m + m + n^2 - n)}{nm}\right]$
 $= \frac{(m+n)}{2}\left[\frac{2n^2 + 2mn + 2m^2 - 2n - 2m - 2m^2 - 4nm + 2m}{+2n - 2n^2}\right]$
 $= \frac{(m+n)}{2}\left[\frac{-2mn}{nm}\right] = -(m+n)$
 $\Rightarrow S_{(m+n)} = -(m+n)$ Hence, proved. (1 M)

32. Given,
$$a_m = \frac{1}{2} \Rightarrow a + (m-1)d = \frac{1}{2}$$
 ...(*i*)

and
$$a_n = \frac{1}{m} \Rightarrow a + (n-1)d = \frac{1}{m}$$
 ...(*ii*)

On subtracting eq. (ii) from (i), we get

$$a + (m-1)d - a - (n-1)d = \frac{1}{n} - \frac{1}{m}$$
$$\Rightarrow d(m-n) = \frac{m-n}{mn} \Rightarrow d = \frac{1}{mn}$$
(1 M)

Put the value of d in eq. (i) we get

$$a + (m-1)\frac{1}{mn} = \frac{1}{n} \Rightarrow a + \frac{1}{n} - \frac{1}{mn} = \frac{1}{n} \Rightarrow a = \frac{1}{mn}$$
 (1 M)

Now,

$$a_{mn} = a + (mn-1)d = \frac{1}{mn} + (mn-1)\frac{1}{mn}$$

$$a_{mn} = \frac{1}{mn}(1+mn-1) = \frac{mn}{mn} = 1 \implies a_{mn} = 1$$
 (1 M)

33. Let the four consecutive numbers of AP be a - 3d, a - d, a + d, a + 3d

Now, according to question

$$a - 3d + a - d + a + 3d + a + 3d = 32$$

 $a + a - 32 \Rightarrow a = 8$...(*D*)
Now, $(a - 3d)(a + 3d) = \frac{7}{15}$ (1 *M*)
 $\Rightarrow \frac{a^2 - 9d^2}{(a - d)(a + d)} = \frac{7}{15}$ (1 *M*)
 $\Rightarrow \frac{a^2 - 9d^2}{(a - d)(a + d)} = \frac{7}{15} \Rightarrow 15a^2 - 135d^2 = 7a^2 - 7d^2$ (1 *M*)
 $\Rightarrow 8a^2 = 128d^2 \Rightarrow 16d^2 = a^2$
from equation (i) we have,
16d^2 - 8e^2 6 + 3d^2 + 3d + 22 (1 *M*)
Now, $d = 2$ then $8 - 3 \times (-2), 8 + (-2), 8 + 3 \times (-2)$
14, 10, 6, 2 (1 *M*)
34, (i) Numbers between 100 and 200 divisible by 9 are
16, 5, 10, 14
 $\Rightarrow 6 + 3d^2 + a + 3d + 3d + 22$ (1 *M*)
Now, $d = 2$ then $8 - 3 \times (-2), 8 + (-2), 8 + 3 \times (-2)$
14, 10, 6, 2 (1 *M*)
35, (b) Given, $ABC - AQPR$
 $\therefore \frac{dC}{PR} = \frac{6}{5} = \frac{3}{3} \Rightarrow x = 2.5$ cm
16, 17, ..., 198
Hence $\frac{PQ}{PR} = \frac{6}{5} = \frac{3}{3} \Rightarrow x = 2.5$ cm
16, 17, ..., 198
Here, $a = 108$ and $d = 9$
 $t_1 = a^2 (n - 1)d \Rightarrow 198 = 108 + (n - 1)9$ (2 *M*)
 $\Rightarrow 90 = (n - 1)9 \Rightarrow 10 = n - 1 \Rightarrow n = 11$ (1 *M*)
Now, $s_x = \frac{n}{2}[a + 1] : i = t_1$ kast term]
 $= \frac{11}{1}[108 + 198] = \frac{11 \times 306}{2} = 11 \times 153 = 1683$ (1 *M*)
(i) Numbers between 100 and 200 which are not divisible
by 9 are 99 $\times 1.6 - 199$. (2 *M*)
Now, $s_x = \frac{n}{2}[a + 1] = \frac{92}{9}[101 + 199] = \frac{99}{2} \times 300$
 $= 99 \times 150 - 1683 = 13167$ (1 *M*)
 $\Rightarrow 3\frac{3}{7} = \frac{x}{x+3} \Rightarrow 3(x+3) = 7x \Rightarrow 3x + 5$
 $\Rightarrow 7x - 3x = 9 \Rightarrow 4x = 9 \Rightarrow x = \frac{9}{4} = 2.25$
39.
 $D = \frac{2DPA}{4} = 2BPC$ (vertically opposite angles)
 $\angle DPA = \angle DP$ (vertically opposite angles)
 $\angle DPA = 2BPC$ (vertically opposite

(1 M)

(1 M)

(1 M)

 $E = 12 \text{ cm}, DW = 24 \text{ cm} (\frac{1}{2} M)$ EW

$$\frac{AD}{DE} = \frac{DB}{DW}$$
 [by Thale's Theorem]

$$\Rightarrow \frac{4}{12} = \frac{x}{24} \Rightarrow x = \frac{4}{12} \times 24 = 8 \text{ cm} \qquad (\frac{1}{2} M)$$

Pw

 $DF \parallel OC$ (by converse of Thale's theorem) (1 M)

42. We have to prove that $PQ \parallel AB$	
Given, in $\triangle ABC$, $DP \parallel BC$	
$\therefore \frac{AD}{BD} = \frac{AP}{PC}$ (By Thale's theorem)	
$\Rightarrow \frac{AD}{AB} = \frac{AP}{AC} \qquad \dots (i)$	(1 M)
Similarly, $EQ \parallel AC$ in $\triangle ABC$	
$\frac{BQ}{QC} = \frac{BE}{EA}$ (By Thale's theorem)	(1 M)
$\Rightarrow \frac{BQ}{BC} = \frac{BE}{AB}$	
BE = AD (given)	
$\frac{BQ}{BC} = \frac{AD}{AB}$	(<i>ii</i>) (1 M)
from eqn. (i) and (ii) we get	
$BQ _ AP _ BQ _ AP$	
$\overline{BC}^{-}\overline{AC}^{-} \rightarrow \overline{QC}^{-}\overline{PC}$	
By converse of Thale's theorem	

Hence, PO || AB proved

(1 M)

7. Coordinate Geometry

43. (b) The distance of the point (x, y) from y-axis is its x-coordinate.

Hence, the distance of the point (-4, 3) from y-axis is 4 units. (1 M)

44. Consider, the centre of the circle be O(-2, 2) and the coordinates of *A* be (x, y) and *B* be (3, 4)

By using mid-point formula, we get

$$(\frac{x+3}{2}, \frac{y+4}{2}) = (-2, 2)$$

$$\therefore \frac{x+3}{2} = -2 \Rightarrow x+3 = -4 \Rightarrow x = -4 - 3 = -7$$
And $\frac{y+4}{2} = 2 \Rightarrow y+4 = 4 \Rightarrow y = 0$
Hence, coordinates of A are (-7, 0) (1 M)
45.
$$\frac{m}{A} \frac{m}{\left(\frac{1}{2}, \frac{3}{2}\right)} \frac{P\left(\frac{3}{4}, \frac{5}{12}\right)}{P\left(\frac{3}{4}, \frac{5}{12}\right)} = \frac{P\left(\frac{3}{4}, \frac{5}{12}\right)}{B} (2, -5)$$

Let *P* divides *AB* internally in the ratio *m*:*n*

We have,

$$\therefore P = \left(\frac{2m + \frac{n}{2}}{m + n}, \frac{-5m + \frac{3n}{2}}{m + n}\right)$$
(1 M)

and given $P = \left(\frac{3}{4}, \frac{5}{12}\right)$

Equating the corresponding co-ordinate from the point P, we get

$$\Rightarrow \frac{2m + \frac{n}{2}}{m + n} = \frac{3}{4} \text{ and } \frac{-5m + \frac{3n}{2}}{m + n} = \frac{5}{12}$$
$$\therefore \frac{4m + n}{2(m + n)} = \frac{3}{4} \Rightarrow 16m + 4n = 6m + 6n \qquad (1/2 M)$$
$$\Rightarrow 10m = 2n \Rightarrow \frac{m}{n} = \frac{2}{10} = \frac{1}{5}$$

 \Rightarrow *P* divides *AB* in the ratio 1: 5 ($\frac{1}{2}$ *M*)

46.
$$A$$
 n C 1 B
(1, 2) $\left(\frac{8}{5}, y\right)$ (2, 3)

Let the ratio in which C divides AB be n:1. Applying section formula for *x*-coordinate, we get

$$\Rightarrow x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \Rightarrow \frac{8}{5} = \frac{2(n) + 1(1)}{n + 1} \qquad (\frac{1}{2} M_2)$$

$$\Rightarrow 8(n+1) = 5(2n+1) \Rightarrow 2n = 3 \Rightarrow n = \frac{3}{2}$$

$$\therefore \text{ Ratio} = \frac{n}{1} = \frac{3}{2} = \frac{3}{2} \text{ or } 3:2 \qquad (1 M)$$

Now, applying section formula for y coordinate

$$y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \Rightarrow y = \frac{3(3) + 2(2)}{3 + 2}$$
 (½ M)
$$\Rightarrow y = \frac{9 + 4}{5} = \frac{13}{5}$$
 (1 M)

- **47.** Let the points A(2, 1) and B(5, -8) is trisected at the points P(x, y) and Q(a, b) such that P is nearer to A.
 - So, *P* divides *AB* internally in the ratio 1 : 2

$$(2, 1) A \underbrace{2x - y + k = 0}_{P} 2 \underbrace{- y + k = 0}_{P} B (5, -8)$$

Using section formula, coordinates of *P* are (1 M)

$$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
(½ M)

$$= \left(\frac{1 \times 5 + 2 \times 2}{1 + 2}, \frac{1 \times -8 + 2 \times 1}{1 + 2}\right)$$

$$(x, y) = \left(\frac{9}{3}, \frac{-6}{3}\right) = (3, -2)$$
Hence, $P \equiv (3, -2)$

$$Y = 3 = 0 \text{ is so the line given by } 2x - y + k = 0$$

$$(3, -2) \text{ satisfies the equation } 2x - y + k = 0$$

$$2 \times 3 - (-2) + k = 0$$

$$(4 \times M)$$

$$\Rightarrow 6 + 2 + k = 0 \Rightarrow k = -8$$
Hence, value of k is -8.
$$(4 \times M)$$
48. Given, $P(x, y)$ is equidistant from $A(a + b, b - a) \& B(a - b, a + b)$.
So, $AP = BP$

$$(1 M)$$

$$\Rightarrow \sqrt{(x - (a + b))^2 + (y - (b - a))^2} = \sqrt{(a - b - x)^2 + (a + b - y)^2}$$

$$(1 M)$$
Squaring and solving
$$\Rightarrow x^2 + (a + b)^2 - 2x(a + b) + y^2 + (b - a)^2 - 2y(b - a)$$

$$= (a - b)^2 + x^2 - 2x(a - b) + (a + b)^2 + y^2 - 2y(a + b)$$

$$\Rightarrow -2ax - 2bx - 2by + 2ay = -2ax + 2bx - 2ay - 2by$$

$$\Rightarrow -4bx = -4ay \Rightarrow bx = ay (Proved)$$

$$(1 M)$$
49.
$$| 49. | 49. | 49. = 5 = 5 = 2 = 3$$

$$A(1,2) = P(x,y) = b \text{ the any point on } AB$$
Given $AP = \frac{2}{5} AB \Rightarrow \frac{AP}{AB} = \frac{2}{5} \therefore PB = 5 - 2 = 3$

$$(1 M)$$
So P divides AB internally in the ratio 2:3
$$P(x, y) = \left(\frac{mx_2 + nx_1}{A}, \frac{my_2 + ny_1}{A}\right)$$

$$(1 M)$$

$$P(x, y) = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$$
(1 M)
= $\left(\frac{2 \times 6 + 3 \times 1}{2 + 3}, \frac{2 \times 7 + 3 \times 2}{2 + 5}\right) = \left(\frac{15}{5}, \frac{20}{5}\right)$
P(x, y) = (3, 4) (1 M)

8. Introduction to Trigonometry

50. Given $2\sin(A + B) = \sqrt{3} \& \cos(A - B) = 1$

$$\Rightarrow \sin (A + B) = \frac{\sqrt{3}}{2} \Rightarrow A + B = 60^{\circ} \dots (i) \qquad (\frac{1}{2} M)$$

Also
$$\cos (A - B) = 1 \implies A - B = 0 \dots (ii)$$
 (½ M)

Adding (i) & (ii)
$$A + B + A - B = 60^{\circ}$$

 $\Rightarrow A = 30^{\circ} \& B = 30^{\circ}$ (1 M)

(1 M)

51. L.H.S=
$$\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A} = \frac{\sin A}{\cos A} \left(\frac{1 - 2\sin^2 A}{2\cos^2 A - 1}\right)$$
 (½ M)

We know, $\sin^2\theta + \cos^2\theta = 1$

$$= \frac{\sin A}{\cos A} \left(\frac{\sin^2 A + \cos^2 A - 2\sin^2 A}{2\cos^2 A - (\sin^2 A + \cos^2 A)} \right)$$
(½ M)

$$=\frac{\sin A}{\cos A}\left(\frac{\cos^2 A - \sin^2 A}{\cos^2 A - \sin^2 A}\right) = \tan A = \text{R.H.S.}$$
(1 M)

Hence, L.H.S. = R.H.S. Hence, proved.

- 52. Given, $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$ L.H.S. $= q(p^2 - 1) = (\sec q + \csc q) [(\sin q + \cos q)^2 - 1]$ $= \left(\frac{1}{\cos \theta} + \frac{1}{\sin \theta}\right) [\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta - 1]$ (1 M) $= \left(\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta}\right) [1 + 2\sin \theta \cos \theta - 1]$ (1 M) $[\because \sin^2 q + \cos^2 q = 1]$ $= \frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} \times 2\sin \theta \cos \theta = 2(\sin q + \cos q)$ $[\because \sin q + \cos q = p]$
 - = 2p = R.H.SHence, L.H.S = R.H.S proved. (1 M)
- **53.** Given, $2(\sin^6\theta + \cos^6\theta) 3(\sin^4\theta + \cos^4\theta) + 1 = 0$ L.H.S =2($(\sin^2\theta)^3 + (\cos^2\theta)^3$) - 3[$(\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta$ $\cos^2\theta$] + 1 (1 M) $= 2\{(\sin^2\theta + \cos^2\theta)^3 - 3\sin^2\theta \cos^2\theta(\sin^2\theta + \cos^2\theta)\}$ $-3(1^2-2\sin^2\theta\cos^2\theta)+1$ $(:: \sin^2\theta + \cos^2\theta = 1)$ $= 2(1-3\sin^2\theta\cos^2\theta) - 3(1-2\sin^2\theta\cos^2\theta) + 1$ (1 M) $= 2 - 6 \sin^2\theta \cos^2\theta - 3 + 6 \sin^2\theta \cos^2\theta + 1 = 3 - 3 = 0$ \therefore LHS = RHS (proved) (1 M)**54.** Given, $\sin (A + 2B) = \frac{\sqrt{3}}{2}$ and $\cos (A + 4B) = 0$ we know, $\sin 60^{\circ} = \frac{\sqrt{3}}{2}, \cos 90^{\circ} = 0$ $(\frac{1}{2}M)$ Now, $\sin (A+2B) = \frac{\sqrt{3}}{2} \Rightarrow \sin (A+2B) = \sin 60^{\circ}$ $(\frac{1}{2}M)$ $A + 2B = 60^{\circ} \Longrightarrow A = 60^{\circ} - 2B$...(*i*) and $\cos(A + 4B) = 0$
 - and $\cos (A + 4B) = 0$ $\cos (A + 4B) = \cos 90^{\circ} \Rightarrow A + 4B = 90^{\circ}$...(*ii*) (1 M) Put A in equation (*ii*) $\Rightarrow 60^{\circ} - 2B + 4B = 90^{\circ} \Rightarrow 2B = 30^{\circ} \Rightarrow B = 15^{\circ}$ (½ M) Put B in equation (*i*), we get $A = 60^{\circ} - 2 \times 15^{\circ} \Rightarrow A = 30^{\circ}$ (½ M)

55. Given,
$$4 \tan \theta = 3 \implies \tan \theta = 3/4$$
,
 $\therefore \tan \theta = \frac{\text{Perpendicular}}{\text{base}} = \frac{3}{4}$
 $\therefore \text{ By Pythagoras theorem, we have}$

$$h = \sqrt{(3)^2 + 4^2} = \sqrt{9 + 16} = 5 \tag{1 M}$$

$$\therefore \sin \theta = \frac{3}{5} \text{ and } \cos \theta = \frac{4}{5}$$

Now,
$$\frac{4\sin\theta - \cos\theta + 1}{4\sin\theta + \cos\theta - 1} = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1}{4 \times \frac{3}{5} + \frac{4}{5} - 1}$$
 (1 M)

$$=\frac{12-4+5}{12+4-5}=\frac{13}{11}$$
 (1 M)

56. L.H.S =
$$\frac{\tan^2 A}{\tan^2 A - 1} + \frac{\csc^2 A}{\sec^2 A - \csc^2 A}$$

 $\therefore \tan A = \frac{\sin A}{\cos A}, \operatorname{cosec} A = \frac{1}{\sin A}, \operatorname{sec} A = \frac{1}{\cos A}$ (½ M)

$$= \frac{\frac{\sin^2 A}{\cos^2 A}}{\frac{\sin^2 A}{\cos^2 A} - 1} + \frac{\frac{1}{\sin^2 A}}{\frac{1}{\cos^2 A} - \frac{1}{\sin^2 A}}$$
(½ M)

$$=\frac{\frac{\sin^2 A}{\cos^2 A}}{\frac{\sin^2 A - \cos^2 A}{\cos^2 A}} + \frac{\frac{1}{\sin^2 A}}{\frac{\sin^2 A - \cos^2 A}{\sin^2 A \cos^2 A}}$$
(½ M)

$$= \frac{\sin^2 A}{\sin^2 A - \cos^2 A} + \frac{\cos^2 A}{\sin^2 A - \cos^2 A}$$
 (½ M)

$$\frac{\sin^2 A + \cos^2 A}{\sin^2 A - \cos^2 A} \tag{\% M}$$

$$= \frac{1}{\sin^2 A - \cos^2 A} \quad [\because \sin^2 A + \cos^2 A = 1] \qquad (\% M)$$

Since, $\sin^2 A = 1 - \cos^2 A$

$$\frac{1}{1-\cos^2 A - \cos^2 A} \tag{42 M}$$

$$\frac{1}{1-2\cos^2 A} = \text{R.H.S} \qquad (\frac{1}{2}M)$$

L.H.S. = R.H.S. Hence proved.

=

_

57. L.H.S. =
$$\frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A}$$
(1 M)

$$= \frac{(\sin A + \cos A)^2 + (\sin A - \cos A)^2}{(\sin A - \cos A)(\sin A + \cos)}$$
(1 M)

(1 M)

62

$$\sin^{2} A + \cos^{2} A + 2\sin A \cos A + \sin^{2} A + \cos^{2} A - \frac{2\sin A \cos A}{\sin^{2} A - \cos^{2} A}$$

$$= \frac{1+1}{1 - \cos^{2} A - \cos^{2} A} [\because \sin^{2} A + \cos^{2} A = 1]$$

$$= \frac{2}{1 - 2\cos^{2} A} = \text{R.H.S.} \qquad (1 \text{ M})$$
Hence, L.H.S. = R.H.S. proved.

9. Some Applications of Trigonometry

58. (*a*) Given that,

$\begin{array}{c} A \\ 6 \\ B \\ \hline 2\sqrt{3} \end{array} C$

Height of the pole = 6 m Length of shadow = $2\sqrt{3}$ m Let θ be the elevation of the sun, then

$$\Rightarrow \tan \theta = \frac{AB}{BC} \Rightarrow \tan \theta = \frac{6}{2\sqrt{3}} = \sqrt{3} = \tan 60^{\circ}$$
$$\therefore \theta = 60^{\circ}$$

Let the length of ladder be l meters (½ M) Now, In ΔDBC ,

$$\sin 60^\circ = \frac{BD}{DC} \Rightarrow \frac{\sqrt{3}}{2} = \frac{6 - 2.54}{l}$$

$$\Rightarrow l = \frac{2 \times 3.46}{\sqrt{3}} = \frac{6.92}{1.73} \Rightarrow l = 4 \text{ m}$$
 (½ M)

In
$$\Delta BAC$$
, $\tan 30^\circ = \frac{AB}{AC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{75}{AC}$ [$\because \tan 30^\circ = \frac{1}{\sqrt{3}}$]
 $\Rightarrow AC = 75\sqrt{3} \text{ m}$...(*i*) (*1 M*)
Now, $\ln \Delta ABD$, $\tan 60^\circ = \frac{AB}{AD} \Rightarrow \sqrt{3} = \frac{75}{AD}$
 $\Rightarrow AD = \frac{75}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{75\sqrt{3}}{3} = 25\sqrt{3} \text{ m}$...(*ii*) ($\frac{1}{2} M$)
Now, $CD = AC + AD$
 $= 75\sqrt{3} + 25\sqrt{3} = 100\sqrt{3} \text{ m}$ [From (*i*) & (*ii*)] (*1 M*)
Hence, the distance between two men is $100\sqrt{3}$ m.

61. Let OA be the height of the tree

$$OA = h \text{ m}$$

$$P \xrightarrow{30^{\circ}} O \xrightarrow{0} O$$

 $\bigvee_{A} \underbrace{60^{\circ}}_{X} Q$ In ΔBTP , $\tan 45^{\circ} = \frac{BT}{PT} \Rightarrow 1 = \frac{h-50}{x}$ $\therefore (i) (1 M)$

In
$$\triangle BAQ$$
, $\tan 60^\circ = \frac{AB}{AQ} \Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow x = \frac{h}{\sqrt{3}}$...(*ii*)

From eqn. (i) and (ii), we get

$$\Rightarrow h - 50 = \frac{h}{\sqrt{3}} \Rightarrow h - \frac{h}{\sqrt{3}} = 50 \Rightarrow h(\sqrt{3} - 1) = 50\sqrt{3}$$
$$\Rightarrow h = \frac{50\sqrt{3}}{\sqrt{3}} \Rightarrow h = \frac{50 \times 1.732}{\sqrt{3}} = 118.25 \text{ m} \tag{1 M}$$

$$\sqrt{3}$$
 -1 1.732 -1 118.25 118.25 (0.25

From equation (*ii*) $x = \frac{110.25}{\sqrt{3}} = \frac{110.25}{1.732} = 68.25 \text{ m}$

Hence, height as the Tower = 118.25 m. and distance between tower and building = 68.25 m (1 M)

Given, the angle of depression of the car at position D is 30° & at position C is 45° .

Clearly, the angle of elevation at D is 30° & at C is 45°.

Let the distances AC & CD be x & y respectively & the height of tower be h.

 \therefore In $\triangle ABC$:

$$\tan 45^\circ = \frac{h}{x} \Rightarrow 1 = \frac{h}{x} \Rightarrow x = h$$
 ...(i) (1 M)

and in $\triangle ABD$:

$$\tan 30^\circ = \frac{h}{x+y} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x+y} \Rightarrow x+y = h\sqrt{3} \qquad \dots (ii)$$

From, (i) and (ii), we get,

 $x + y = x\sqrt{3} \Rightarrow y = x\sqrt{3} - x \text{ [subtracting } x \text{ from both sides]}$ $= x(\sqrt{3} - 1) \tag{1 M}$

Therefore, the car took 12 minutes to reach from *D* to *C* i.e., the distance, $x(\sqrt{3} - 1)$.

:. Speed of the car,
$$S = \frac{\text{distance}}{\text{time}} = \frac{x(\sqrt{3}-1)}{12}$$
 (1 M)

Now, time taken by car to reach from *C* to *D*, i.e., to cover *x* units is,

Time taken =
$$\frac{\text{distance}}{\text{speed}} = \frac{x}{\frac{x(\sqrt{3}-1)}{12}} = \frac{12}{\sqrt{3}-1}$$

$$=\frac{12(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{12(\sqrt{3}+1)}{3-1}=\frac{12(\sqrt{3}+1)}{2}=6(\sqrt{3}+1)$$

 $= 16.4 \min(approx)$

 \therefore The time taken by the car to reach the tower is 16.4 min. (1 M)

64. Let P be the position of the cloud which makes an angle of elevation from A is 30° and Q be the position of reflection of the cloud which makes angle of depression from A is 60° .

55. (d) In the given figure

$$OQ = OP, \angle QOP = 65^{\circ}$$

 $\Rightarrow \angle PQO = \angle QPO$ (Angle opposite to equal sides)
 \therefore In $\triangle POQ, \angle PQO + \angle QPO + 65^{\circ} = 180^{\circ}$

$$\Rightarrow \angle OPQ = \left(\frac{115}{2}\right)^{\circ}$$
$$\Rightarrow \angle QPT = \left(\frac{65}{2}\right)^{\circ} \{\because \angle OPQ + \angle QPT = 90^{\circ}\}$$
(1 M)

66. (a) Given, $\angle APB = 55^{\circ}$ Also, $\angle PAC = \angle PBC = 90^{\circ}$ [Tangent is \bot to radius] Now, in quadrilateral PACB $\angle APB + \angle PAC + \angle PBC +$ $\angle ACB = 360^{\circ}$ [:: Sum of interior angles in quadrilateral = 360°] $\therefore 55^{\circ} + 90^{\circ} + 90^{\circ} + \angle ACB = 360^{\circ} \Rightarrow \angle ACB = 125^{\circ}$

As we know, that the angle subtended by an arc at the centre is double the angle subtended by an arc at the remaining part of the circle.

$$\therefore \angle ACB = 2 \angle AQB \Rightarrow \angle AQB = \frac{125^{\circ}}{2} = 62\frac{1}{2}^{\circ} (1 M)$$

67. Given that *PQ* is chord and $\angle QPT = 60^{\circ}$

From the figure, we have

$$\angle OPT = \angle QPO + \angle QPT$$

 $\Rightarrow 90^\circ = \angle QPO + 60^\circ$
 $\Rightarrow \angle QPO = 90^\circ - 60^\circ = 30^\circ$
 $\therefore \angle OQP = 30^\circ$
[$\because OPQ$ is isosceles triangle]
In $\triangle OPQ$
 $\Rightarrow \angle QPO + \angle POQ + \angle OQP = 180^\circ$
[Sum of interior \angle 's of a triangle is 180° .]
 $\Rightarrow 30^\circ + \angle POQ + 30^\circ = 180^\circ$
 $\Rightarrow \angle POQ = 180^\circ - 30^\circ - 30^\circ = 120^\circ$
 $\therefore reflex \angle POQ = 360^\circ - 120^\circ = 240^\circ$
 $\therefore \angle PRQ = \frac{1}{2} \times reflex \angle POQ = \frac{1}{2} \times 240 = 120^\circ$ ($\frac{1}{2}M$)
68.
A
Construction: Join *OC*
Proof:
In $\triangle OOA$ and $\triangle OCO$

In $\triangle OQA$ and $\triangle OCQ$ OA = OC (Radii of the same circle) QO = QO (Common side) QA = QC (Tangents from same external point A)

$$\therefore \Delta OAQ \cong \Delta OCQ \text{ (using SSS congruency)} (1 M)$$

$$\angle AOQ = \angle COQ \qquad \dots(i) \qquad \text{[by C.P.C.T]}$$
Similarly $\Delta OBP \cong \Delta OCP$
Therefore $\angle BOP = \angle COP \dots(ii) \qquad \text{[by C.P.C.T]}$
As line AOB is a straight line passing through centre Q .

As line AOB is a straight line passing through centre O, therefore it can be considered as a diameter of the circle (1 M)

So $\angle AOQ + \angle COQ + \angle COP + \angle BOP = 180^{\circ}$ Now from equations (*i*) and equation (*ii*) we get $2\angle COQ + 2\angle COP = 180^{\circ} \Rightarrow \angle COQ + \angle COP = 90^{\circ}$ $\therefore \angle POQ = 90^{\circ} (\therefore \angle COQ + \angle COP = \angle POQ)$ (1 M) Hence proved.

Given: A circle with center *O* & tangent *PA* & *PB* drawn to the circle from the external point *P*.

Construction: Join OA, OP & OB.

To prove: Length of tangents drawn are equal i.e., PA = PB(1 M)

Proof:

We know that, tangents drawn to a circle is perpendicular to the radius of the circle at the point of contact.

$\therefore \angle OAP = \angle OBP = 90^{\circ}$	(<i>i</i>) (1 M)
Now, In $\triangle OAP$ & $\triangle OBP$;	
$\angle OAP = \angle OBP$	[from (<i>i</i>)]
OP = OP	[common]
OA = OB	[both are radius of circle]
by RHS congruency criteria,	
$\Delta OAP \cong \Delta OBP$	(1 M)
Hence, $PA = PB$	[by C.P.C.T]

i.e., the length of tangents drawn from an external point to the circle are equal. (1 M)

Given OP = OQ = 5 cm, OT = 13 cm Also, PT = TQ(tangent from same external point) In $\triangle OPT$, $\angle P = 90^{\circ}$ (1 M) $OT^2 = OP^2 + PT^2 \Longrightarrow 13^2 = 5^2 + PT^2 \Longrightarrow PT = 12$ cm = POSince length of tangents drawn from a point to a circle are equal. Therefore AP = AE = x (let) $\Rightarrow AP = AE = PT - AT = 12 - AT \Rightarrow AT = 12 - AP$ $\Rightarrow AT = (12 - x) \text{ cm}$ and $OT = OE + ET \Rightarrow 13 = 5 + ET \Rightarrow ET = 8 \text{ cm}$ (1 M) Now, In $\triangle AET$, $AT^2 = AE^2 + ET^2 \Longrightarrow (12 - x)^2 = x^2 + 8^2$ $\Rightarrow 144 - 24x + x^2 = x^2 + 64 \Rightarrow 24x = 80$ $\Rightarrow x = \frac{10}{3}$ cm (1 M)Similarly $BE = \frac{10}{3}$ cm $\therefore AB = AE + BE = \frac{10}{3} + \frac{10}{3} = \frac{20}{3}$ cm (1 M)

11. Areas Related to Circle

```
72. Given, r = 5.2 cm and perimeter of the sector = 16.4 cm.
Let AOB be the sector with center O.
```

$$\therefore \text{ perimeter of the sector} = AO + AB + OB$$

$$\Rightarrow 16.4 = 5.2 + 5.2 + AB$$

$$\Rightarrow AB = 16.4 - 10.4 = 6 \text{ cm} \qquad (1 \text{ M})$$

$$\therefore \text{ Area of the sector} = \frac{1}{2}rl = \frac{1}{2} \times 5.2 \times 6 = 15.6 \text{ cm}^2. (1 \text{ M})$$

73. Given, radius = 21 cm

Let $\theta = \angle AOB = 120^{\circ}$

Area of segment AYB = Area of sector $OAYB$	
$-$ Area of ΔAOB	(½ M)
Area of sector $OAYB = \frac{\theta}{360^\circ} \times \pi r^2 = \frac{120^\circ}{360^\circ} \times \frac{22}{7} \times (21)$	$)^{2}$
$=\frac{1}{3} \times \frac{22}{7} \times 21 \times 21 = 22 \times 21 = 462 \text{ cm}^2$	(½ M)
Now, for area of $\triangle AOB$, draw $OP \perp AB$	
Note that, $OA = OB$ (Radii of the circle)	
Therefore, by R.H.S congruence	
$\Delta APO \cong \Delta BPO$	(½ M)
So, <i>P</i> is the mid-point of <i>AB</i> and $\angle AOP = \angle BOP$	
$-\frac{1}{120^\circ - 60^\circ}$ A $-\frac{P}{120^\circ}$	B
$-\frac{1}{2}$	~
Consider, $OP = x \text{ cm}$	
OP	
From $\triangle OPA$, $\frac{OP}{OA} = \cos 60^\circ \Rightarrow \frac{x}{21} = \frac{1}{2} \Rightarrow x = \frac{21}{2}$ cm	
Also, $\sin 60^\circ = \frac{AP}{OA} \Rightarrow \frac{\sqrt{3}}{2} = \frac{AP}{21} \Rightarrow AP = \frac{21\sqrt{3}}{2} \text{ cm}$	n
$\therefore AB = 2AP = 21\sqrt{3}$ cm	(½ M)
$\therefore \text{ Area of } \Delta OAB = \frac{1}{2} \times AB \times OP = \frac{1}{2} \times 21\sqrt{3} \times \frac{21}{2}$	
$=\frac{441\sqrt{3}}{4}\mathrm{cm}^2$	(½ M)
$\therefore \text{ Area of segment } AYB = \left(462 - \frac{441}{4}\sqrt{3}\right) \text{cm}^2$	
$= \left(\frac{1848 - 441\sqrt{3}}{4}\right) \operatorname{cm}^2 = \frac{21}{4} \left(88 - 21\sqrt{3}\right) \operatorname{cm}^2 \cong 271$	$.04\mathrm{cm}^2$
Let PRO be the arc subtending an angle of 60°	(½ M)
Let T Mg be the are subtending an angle of 00	

74.

(1 M)

Area of the minor segment PRQP

= Area of the sector OPRQ – Area of $\triangle OPQ$

$$= \pi r^{2} \times \frac{\theta}{360} - \frac{1}{2}r^{2} \sin \theta$$

$$= \frac{22}{7} \times (14)^{2} \times \frac{60}{360} - \frac{1}{2} \times (14)^{2} \sin 60^{\circ}$$

$$= 22 \times 2 \times 14 \times \frac{1}{6} - 7 \times 14 \times \frac{\sqrt{3}}{2}$$

$$= \frac{308}{3} - 49\sqrt{3} \approx 17.89 \text{ cm}^{2}$$
 (1 M)

Area of major segment = Area of circle – Area of minor segment PROP.

$$= \pi r^2 - 17.89 = \frac{22}{7} \times 14 \times 14 - 17.89$$

= 616 - 17.89 \approx 598.11 cm² (1 M)

75. Given, Radius of circle = 10 cm

Angle of minor sector at centre = 60°

Now, Area of sector
$$=\frac{\theta}{360^{\circ}} \times \pi r^2$$

area of circle = πr^2

Area of minor segment PRQ

= Area of sector
$$OPRQ$$
 – Area of $\triangle OPQ$

$$=\frac{60^{\circ}}{360^{\circ}} \times 3.14 \times 10^{2} - \frac{\sqrt{3}}{4} \times (\text{side})^{2}$$
 (1 M)

$$= 52.33 - \frac{\sqrt{3}}{4} (10)^2 = 52.33 - 43.30 \approx 9.03 \text{ cm}^2 \qquad (1 M_z)^2$$

Area of major sector = Area of circle - Area of minor segment PRQ

$$= \pi r^2 - 9.03 = 3.14 \times 10 \times 10 - 9.03 \approx 304.97 \text{ cm}^2 \quad (1 \text{ M})$$

76. (d) For new cuboid formed

$$A = 2 (lb + bh + hl) \qquad (l = 20, b = 10, h = 10)$$
$$= 2 (200 + 100 + 200) = 1000 \text{ cm}^2$$

For cube of 10 cm length $A = 10 \times 10 = 100 \text{ cm}^2$

Hence, Assertion is not true but reason is true. (1 M)

12. Surface Areas and Volumes

Curved surface area of a right circular cylinder = 17	76 cm^2
$\Rightarrow 2\pi rh = 176 \Rightarrow \pi rh = 88$	(<i>i</i>)
also given, vol. of cylinder = 1232 cm^3	
$\Rightarrow \pi r^2 h = 1232$	(<i>ii</i>)
On dividing equ.(<i>ii</i>) from (<i>i</i>), we get	(1 M)

$$\Rightarrow \frac{\pi r^2 h}{\pi r h} = \frac{1232}{88} \Rightarrow r = 14 \text{ cm}$$

put the value of r in equ. (i), we get $\Rightarrow \pi \times 14 \times h = 88$

$$\Rightarrow \frac{22}{7} \times 14 \times h = 88 \Rightarrow h = 2 \text{ cm}$$
 (1 M)

78. Given, height of the cylinder = 10 cm

radius of base = 3.5 cm

Total surface area of the article = curved surface area of the cylinder $+ 2 \times$ surface area of hemisphere. ...(*i*) Now, the curved scarface area of the cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 3.5 \times 10 = 220 \text{ cm}^2 \tag{1 M}$$

Now surface area of the hemisphere = $2\pi r^2 = 2 \times \frac{22}{7} \times (3.5)^2$

$$= 2 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} = 77 cm^2$$
 (1 M)

 \therefore Total surface area of the article = $220 + 2 \times 77 = 374$ cm² (1 M)

79. Given, Radius of conical heap = 12 m

: volume of rice
$$= \frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times (12)^2 \times 3.5 = 528 \text{ m}^3$$

Area of canvas cloth required = πrl

$$l = \sqrt{12^2 + (3.5)^2} = 12.5 \text{ m}$$
 (1 M)

Now, area of canvas required = $\frac{22}{7} \times 12 \times 12.5 = 471.4 \text{ m}^2$ (1 M)

(1 M)

Given, height of cylinder = 2.4 cm, radius of cylinder = 0.7 cm Now, a right circular cone is cut out from the cylinder with same height & radius (1 M) \therefore Total surface area of the remaining solid = (curved surface area of cylinder) + (curved surface area of cone) + (area of top of the cylinder).

$$=2\pi rh+\pi r\ell+\pi r^2$$

Now, slant height of cone, $\ell = \sqrt{h^2 + r^2}$

$$= \sqrt{(2.4)^2 + (0.7)^2} \text{ cm} = \sqrt{5.76 + 0.49} \text{ cm}$$

= √6.25 cm = 2.5 cm (1 M)
∴ Total surface area of remaining solid

$$=2\pi rh + \pi r\ell + \pi r^2 = \pi r (2h + \ell + r)$$

$$= \pi \times 0.7 (2(2.4) + 2.5 + 0.7) = \frac{22}{7} \times 0.7 \times 8 = 17.6 \text{ cm}^2$$

Hence, the total surface area of the remaining solid is 17.6 cm². (1 M)

81. Given; Side of a Cube = 6 cm

Total surface area of cube = $6 \times (\text{Side})^2 = 216 \text{ cm}^2$

Area coverd on the face of cube by circular part of
hemisphere =
$$\pi r^2 = \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} = \frac{77}{8}$$
 (1 M)

curved surface area of hemisphere

$$= 2\pi r^2 = 2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} = \frac{77}{4}$$
 (1 M)

Now total surface area = Surface area of cube – area of circular part + area of hemisphere

$$= 216 - \frac{77}{8} + \frac{77}{4} = \frac{1728 - 77 + 154}{8} = 225.625 \text{ cm}^2 \text{ (1 M)}$$

82. Given dimensions of cylindrical part,

Height, $h_1 = 2.1$ m; Diameter, $d_1 = 3$ m

Slant height, l = 2.8 m;

Diameter of cone d_2

= diameter of cylinder $d_1 = 3$ cm (1 M)

Now, Area of canvas needed = curved surface area of tent

+ curved surface area of cylinder.
= πrl + 2πrh ⇒ π
$$\frac{d_2}{2}l + 2\pi \frac{d_1}{2}h$$

= $\frac{22}{7} \times \frac{3}{2} \times [2.8 + 2 \times 2.1] = 33 \text{ m}^2$ (1 M)
∴ The area of canvas needed = 33 m²
Given, cost of canvas is ₹500 /m²
∴ Total cost of canvas = ₹(500 × 33) = ₹16500. (1 M)
83. r = radius of the hemisphere = 3.5 cm
and let, 'h' is the height of the cone
Total volume of solid wooden toy
= volume of cone
+ volume of hemisphere
⇒ $166\frac{5}{6}\text{ cm}^3 = \frac{1}{3}\pi r^2h + \frac{2}{3}\pi r^3$
⇒ $\frac{1001}{6} = \frac{1}{3}\pi \times r^2(h+2r)$

$$\Rightarrow \frac{1001}{6} = \frac{1}{3} \times \frac{22}{7} \times (3.5)^2 (h+7)$$
 (1 M)

$$\Rightarrow \frac{1001}{77} = h + 7 \Rightarrow h = \frac{462}{77} \Rightarrow h = 6 \text{ cm}$$
 (1 M)

Height of toy = h + r = 6 + 3.5 = 9.5 cm Surface area of hemisphere = $2\pi r^2 = 2\pi (3.5)^2 = 77$ cm² Cost of painting the hemispherical part of the toy = $77 \times 10 = ₹770$ (1 M)

13. Statistics

84. (*a*) Since the median is the middle value of the data set when it is arranged in ascending order, increasing every value by the same amount won't change its position relative to other values but the median of the new data increases by 2. (*1 M*)

	Cost of Living Index	No. of Weeks (f)	cf
	1400 - 1550	8	8
	1550 - 1700	15	23
	1700 - 1850	21	44
	1850 - 2000	8	52
		$N = \sum f = 52$	
1			

Here, N = 52

85.

$$\Rightarrow \frac{N}{2} = \frac{52}{2} = 26$$

 \therefore 26 will lie in the class interval 1700 – 1850.

 \therefore Median class is 1700 - 1850.

(½ M)

(½ M)

(1 M)

86. From the given table,

Maximum frequency is 25 for shoes size 5	(½ M)
Hence, modal size of shoes is 5	(½ M)

87.

C.I	f_i	x _i	$x_i f_i$
3 – 5	5	4	20
5 - 7	10	6	60
7 – 9	10	8	80
9-11	7	10	70
11 - 13	8	12	96
Total	$\Sigma f_i = 40$		$\Sigma x_i f_i = 326$

From the above table we have, c

1 \

$$\Sigma f_i = 40 \text{ and } \Sigma x_i f_i = 326$$

 $\therefore \text{ Mean} = \frac{\Sigma x_i f_i}{\Sigma f_i} = \frac{326}{40} = 8.15$ (1 M)

88.

C.I	f_i
0 - 20	6
20 - 40	8
40 - 60	10
60 - 80	12
80 - 100	6
100 - 120	5
120 - 140	3

Highest frequency = 12

Modal class = 60 - 80

$$l = 60, f_0 = 10, f_1 = 12, f_2 = 6 \text{ and } h = 20$$
 (1 M)

: Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$
 (½ M)

$$= 60 + \left(\frac{12 - 10}{2 \times 12 - 10 - 6}\right) \times 20 = 60 + \frac{2}{8} \times 20 = 60 + 5 = 65$$
(¹/₂ M)

89.

Pocket money in ₹	No. of students
0 - 20	2
20 - 40	2
40 - 60	3
60 - 80	12
80 - 100	18
100 - 120	5
120 - 140	2
	-

modal class is 80 - 100

Now, mode
$$= l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$
 (½ M)

$$l = 80, f_1 = 18, f_0 = 12, f_2 = 5, h = 20$$

mode =
$$80 + \frac{18 - 12}{2 \times 18 - 12 - 5} \times 20$$
 (½ M)

$$=80 + \frac{6 \times 20}{19} = 86.32$$
(approx)

Hence, required pocket money =₹86.32 (approx) (½ M)

90. We will use the mid-point of each interval to represent the marks for calculation.

Interval	Class mark (x)	No. of students (f_{i})
0-10	5	12
10–20	15	23
20-30	25	34
30-40	35	25
40-50	45	6

$$Mean = \frac{\sum f_i x_i}{\sum f_i}$$
(½ M)
= $\frac{(5 \times 12) + (15 \times 23) + (25 \times 34) + (35 \times 25) + (45 \times 6)}{12 + 23 + 34 + 25 + 6}$

$$(\frac{1}{2}M)$$

(2 Mark)

(1 M)

$$=\frac{60+345+850+875+270}{100}=\frac{2400}{100}=24$$
 (1 M)

91.

(½ *M*)

Class Interval	Frequency f_i	<i>x</i> _{<i>i</i>}	$d_i = x_i \\ -55$	$f_i d_i$
10 - 20	8	15	-40	-320
20-30	7	25	-30	-210
30 - 40	12	35	-20	-240
40 - 50	23	45	-10	-230
50 - 60	11	55=A	0	0
60 - 70	13	65	10	130
70 - 80	8	75	20	160
80 - 90	6	85	30	180
90 - 100	12	95	40	480
	$\sum f_i = 100$			$\sum f_i d_i = -50$

Let A = 55 [Assumed Mean]

$$\therefore \text{ Mean} = A + \frac{\Sigma fi di}{\Sigma fi} = 55 + \frac{(-50)}{100} = 55 - 0.5 = 54.5$$

$$\therefore \text{ The mean is 54.5.} \qquad (1 M)$$

A	1
9	4.

Marks	No. of Student (f_i)	x _i	$d_i = x_i \\ -55$	$f_i d_i$
0-10	1	5	-50	-50
10-20	3	15	-40	-120
20-30	7	25	-30	-210
30-40	10	35	-20	-200
40–50	15	45	-10	-150
50-60	x	55 = A	0	0
60–70	9	65	10	90
70-80	27	75	20	540
80–90	18	85	30	540
90–100	У	95	40	40y
	$\sum f_i = 90 + x + y$			$\sum f_i d_i = 440 + 40y$

Here, h = 10, A = 55

We know, Mean =
$$A + \frac{\Sigma f_i d_i}{\Sigma f_i} \Rightarrow 59 = 55 + \frac{440 + 40y}{90 + x + y}$$

$$\Rightarrow \frac{440 + 40y}{90 + x + y} = 4 \Rightarrow 440 + 40y = 360 + 4x + 4y$$

$$\Rightarrow 4x - 36y = 80 \Rightarrow x - 9y = 20 \qquad \dots (i)$$

and given
$$\sum f_i = 120$$

 $\Rightarrow 90 + x + y = 120 \Rightarrow x + y = 30$...(*ii*) (1 M)

Adding equation (i) + 9 × (ii), we get

$$10x = 290 \Rightarrow x = 29$$

From equation (ii)
 $29 + y = 30 \Rightarrow y = 1$ (1 M

14. Probability

93. (d) Let A be the event of winning the game and \overline{A} be the event of not winning (losing) the game. Given P(A) = 0.79We know that $P(A) + P(\overline{A}) = 1$ $\Rightarrow 0.79 + P(\overline{A}) = 1$

$$\Rightarrow P(A) = 1 - 0.79 = 0.21$$
 (1 M)

94. Total number of possible outcomes in an English alphabet = 26 Total number of favourable outcomes of chosen letter is a consonant = 21

$$\therefore \quad P(E) = \frac{21}{26} \tag{1 M}$$

Square of the given numbers = 9, 4, 1, 0, 1, 4, 9 (¹/₂ M)

Favourable numbers = 4, 1, 0, 1, 4

∴ The number of favourable number n(E) = 5Total number n(S) = 7 (½ M) ∴ Probability of $x^2 \le 4 = \frac{n(E)}{n(S)} = \frac{5}{7}$ (1 M)

96. (*i*) We know, when a die is thrown, total possible outcomes = 6

- \therefore Prime numbers are 2, 3 and 5
- \therefore Total number of prime numbers = 3
- \therefore *P*(getting a prime number)

$$= \frac{\text{Total no. of favourable outcomes}}{\text{Total no. of possible outcomes}} = \frac{3}{6} = \frac{1}{2}$$
(1 M)

(*ii*) Since, numbers between 2 and 6 are 3, 4, and 5

∴ Total number between 2 and 6 = 3 ∴ P(Getting a number between 2 and 6) = $\frac{3}{6} = \frac{1}{2}$ (1 M)

97. The possible outcomes

- \therefore Total no. of possible outcomes = 8
- (*i*) Number of favourable outcomes at least two heads= {HHT, HHH, HTH, THH} = 4

:. Probability of at least 2 heads
$$=\frac{4}{8}=\frac{1}{2}$$
 (1 M)

:. Probability of at most 2 heads
$$=\frac{7}{8}$$
 (1 M)

98. The event is that two dies are thrown together ∴ The sample space is.

{(1, 1),	(2, 1),	(3, 1),	(4, 1),	(5, 1),	(6, 1),
(1, 2),	(2, 2),	(3, 2),	(4, 2),	(5, 2),	(6, 2),
(1, 3),	(2, 3),	(3, 3),	(4, 3),	(5, 3),	(6, 3),
(1, 4),	(2, 4),	(3, 4),	(4, 4),	(5, 4),	(6, 4),
(1, 5),	(2, 5),	(3, 5),	(4, 5),	(5, 5),	(6, 5),
(1, 6),	(2, 6),	(3, 6),	(4, 6),	(5, 6),	(6, 6)}
∴ Total	no. of o	utcomes	= 36.		(2 Marks)
(1) 3.7	2			10	

(i) No. of outcomes with even sum = 18

$$\therefore P(\text{even sum}) = \frac{\text{no. of outcomes with even sum}}{\text{total no. of outcomes}}$$
$$= \frac{18}{36} = \frac{1}{2}$$
(1 M)

(ii) No. of outcomes with even product = 27

$$\therefore P(\text{even product}) = \frac{\text{no. of outcomes with even product}}{\text{total no. of outcomes}}$$
$$= \frac{27}{36} = \frac{3}{4}$$
(1 M)

99. Chances of arrow = {1, 2, 3, 4, 5, 6, 7, 8} <i>n</i> (<i>s</i>) = 8		$P(\text{drawing a ball bears number 8}) = \frac{1}{15} \qquad (1 \text{ M})$
we know, Probability = $\frac{\text{Favourable outcome}}{\text{Total outcomes}}$ (<i>i</i>) Let <i>A</i> be a event of an odd number.	(1 M)	(<i>ii</i>) Even number balls are 2, 4, 6, 8, 10, 12 and 14 Total number of even balls = 7 (1 M) $P(\text{drawing a ball bears an even number}) = \frac{7}{15}$ (1 M)
$P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$ (<i>ii</i>) Let <i>B</i> be a Event of a number greater than 3	(1 M)	OR Number of ball bears a number which is a multiple of 3 are 3, 6, 9, 12 and 15 (1 M) Total number of ball bears a number which is a
$B = \{4, 5, 6, 7, 8\}$ $n(B) = 5 \implies P(B) = \frac{5}{8}$ (<i>iii</i>) Let C be a event of a number less than 9 $C = \{1, 2, 3, 4, 5, 6, 7, 8\}$	(1 M)	$P(\text{drawing a ball bears a number having a multiple of 3) = \frac{5}{15} = \frac{1}{3}$ (1 M) $(iii) \text{ Number of solid coloured balls} = 8$
$n(C) = 8 \implies P(C) = \frac{8}{8} = 1$ 100. (<i>i</i>) Total number of balls = 15 Number of ball bears numbers 8 = 1	(1 M)	Number of solid coloured balls having an even number = 4 P(drawing a solid coloured and bears an even number ball) = $\frac{4}{15}$ (1 M)
		/3

THE RANKERS